physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force is carried by electromagnetic fields composed of electric fields and magnetic fields, and it is responsible for electromagnetic radiation such as light. It is one of the four fundamental interactions (commonly called forces) in nature, together with the strong interaction, the weak interaction, and gravitation.[1] At high energy, the weak force and electromagnetic force are unified as a single electroweak force.

Electromagnetic phenomena are defined in terms of the electromagnetic force, sometimes called the Lorentz force, which includes both electricity and magnetism as different manifestations of the same phenomenon. The electromagnetic force plays a major role in determining the internal properties of most objects encountered in daily life. The electromagnetic attraction between atomic nuclei and their orbital electrons holds atoms together. Electromagnetic forces are responsible for the chemical bonds between atoms which create molecules, and intermolecular forces. The electromagnetic force governs all chemical processes, which arise from interactions between the electrons of neighboring atoms. Electromagnetism is very widely used in modern technology, and electromagnetic theory is the basis of electric power engineering and electronics including digital technology.

There are numerous mathematical descriptions of the electromagnetic field. Most prominently, Maxwell's equations describe how electric and magnetic fields are generated and altered by each other and by charges and currents.

The theoretical implications of electromagnetism, particularly the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), led to the development of special relativity by Albert Einstein in 1905.

Originally, electricity and magnetism were considered to be two separate forces. This view changed with the publication of James Clerk Maxwell's 1873 A Treatise on Electricity and Magnetism [2]in which the interactions of positive and negative charges were shown to be mediated by one force. There are four main effects resulting from these interactions, all of which have been clearly demonstrated by experiments:

1. Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: unlike charges attract, like ones repel.
2. Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as pairs: every north pole is yoked to a south pole.
3. An electric current inside a wire creates a corresponding circumferential magnetic field outside the wire. Its direction (clockwise or counter-clockwise) depends on the direction of the current in the wire.
4. A current is induced in a loop of wire when it is moved toward or away from a magnetic field, or a magnet is moved towards or away from it; the direction of current depends on that of the movement.
" /> physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force is carried by electromagnetic fields composed of electric fields and magnetic fields, and it is responsible for electromagnetic radiation such as light. It is one of the four fundamental interactions (commonly called forces) in nature, together with the strong interaction, the weak interaction, and gravitation.[1] At high energy, the weak force and electromagnetic force are unified as a single electroweak force.

Electromagnetic phenomena are defined in terms of the electromagnetic force, sometimes called the Lorentz force, which includes both electricity and magnetism as different manifestations of the same phenomenon. The electromagnetic force plays a major role in determining the internal properties of most objects encountered in daily life. The electromagnetic attraction between atomic nuclei and their orbital electrons holds atoms together. Electromagnetic forces are responsible for the chemical bonds between atoms which create molecules, and intermolecular forces. The electromagnetic force governs all chemical processes, which arise from interactions between the electrons of neighboring atoms. Electromagnetism is very widely used in modern technology, and electromagnetic theory is the basis of electric power engineering and electronics including digital technology.

There are numerous mathematical descriptions of the electromagnetic field. Most prominently, Maxwell's equations describe how electric and magnetic fields are generated and altered by each other and by charges and currents.

The theoretical implications of electromagnetism, particularly the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), led to the development of special relativity by Albert Einstein in 1905.

Originally, electricity and magnetism were considered to be two separate forces. This view changed with the publication of James Clerk Maxwell's 1873 A Treatise on Electricity and Magnetism [2]in which the interactions of positive and negative charges were shown to be mediated by one force. There are four main effects resulting from these interactions, all of which have been clearly demonstrated by experiments:

1. Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: unlike charges attract, like ones repel.
2. Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as pairs: every north pole is yoked to a south pole.
3. An electric current inside a wire creates a corresponding circumferential magnetic field outside the wire. Its direction (clockwise or counter-clockwise) depends on the direction of the current in the wire.
4. A current is induced in a loop of wire when it is moved toward or away from a magnetic field, or a magnet is moved towards or away from it; the direction of current depends on that of the movement.
" />
First Community Portal for K-12
##### Email Us
info@justlearning.in